Mark Scheme (Results)

October 2020

Pearson Edexcel International Advanced
Level In Biology (WBI11) Paper 01
Molecules, Diet, Transport and Health

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code IAL_2010_WBI11_01
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Additional guidance	Mark
1（a）	peptide（1） amino／ $\mathrm{NH}_{2} / \mathrm{NH}_{3}{ }^{+} /$amine（1） carboxyl／COOH／CO2 $\mathrm{H}^{-1 / C O O} /$ carboxylic（acid）（1） condensation（1） translation（1）	DO NOT ACCEPT dipeptide／ polypeptide／amide ACCEPT second and third point either way round ACCEPT polymerisation／addition elimination	（5）

Question number	Answer					Mark
1（b）						
	Structure	Hydrogen bonds only	Ionic bonds only	Both hydrogen and ionic bonds	Neither of these bond	
	secondary structure	X	区	区	区	
	three－dimensional structure	区	区	x	区	（2）

Question number	Answer	Additional guidance	Mark
2(a)		IGNORE genetic composition / combination of information carried in the genes / all genetic (information / make up\}	
	- combination of alleles (1)	DO NOT ACCEPT genes	

Question number	Answer	Additional guidance	Mark
2(b)	• 1 in $2 / 50: 50 / 50 \% / 0.5 / \frac{1}{2}$	ACCEPT 2 in $4 / 1: 1 / 2: 2$	

Question number	Answer	Additional guidance	Mark
2(c)	An answer that makes reference to the following points:		
• parents shown as heterozygotes (1)	CEs throughout ACCEPT any pair of letters chosen to represent alleles from Punnet square		

Question number	Answer	Additional guidance	Mark
2(d)	• 1 in $30 / 0.03 / 3.3 \% / 1 / 30$	ACCEPT 0.03 recurring $/ 3.3 \%$ recurring	

Question number	Answer	Mark
3(a)(i)	The only correct answer is B \boldsymbol{A} is incorrect because the ventricles are relaxed \boldsymbol{C} is incorrect because the atria are contracted and the ventricles are relaxed D is incorrect because the atria are contracted	(1)

Question number	Answer	Additional guidance	Mark
3(a)(ii)	An explanation that includes the following points: - because the atrioventricular valves have to close (before the ventricles contract) (1)	ACCEPT \{bicuspid / mitral\} valve and tricuspid valve DO NOT ACCEPT valves close during ventricular systole	

Question number	Answer	Additional guidance	Mark
3(a)(iii)	cardiac cycle time multiplied by proportion of cycle spent in ventricular systole (1)	Example of calculation: $\quad 3.2 \times 10^{2} / 3.23 \times 10^{2}(1)$	Correct answer with no working gains 2 marks

Question number	Answer	Additional guidance	Mark
3(a)(iv)	• $63 \% / 5 / 8 / 0.63$	ACCEPT $0.625 / 62.5 \% / 5$ out of 8	

Question number	Answer	Additional guidance	Mark
3(b)	- heart rate if cardiac cycle lasts 0.86 seconds (1) - heart rate if cardiac cycle last 0.46 seconds (1) - increase in heart rate $=60 / 61$ beats per minute	Example of calculation: $\begin{aligned} & 60 \div 0.86=69.76744186046512 \\ & 60 \div 0.46=130.4347826 \end{aligned}$ Answer in range of 60.2 to 60.7 gains 2 marks CE from calculations of heart rate Correct answer alone gains 3 marks	(3)

Question number	Answer	Additional guidance	Mark	
4(a)(i)	• circle drawn around R , the attached sugar and a phosphate group			

Question number	Answer	Mark
4(a)(ii)	The only correct answer is D A is incorrect because S is a phosphodiester bond, T is a covalent bond and U is a hydrogen bond \boldsymbol{B} is incorrect because S is a phosphodiester bond and U is a hydrogen bond \mathbf{C} is incorrect because T is a covalent bond and U is a hydrogen bond	(1)

Question number	Answer	Mark
4(a)(iii)	The only correct answer is C Thymine	
	A is incorrect because adenine is complementary to thymine	
B is incorrect because adenine is complementary to thymine		
D is incorrect because adenine is complementary to thymine	(1)	

Question number	Answer	Additional guidance	Mark
4(b)(i)	A diagram that shows the following points: - a band the same width as stage 1 in the middle of the tube (1) - bands drawn at the top and middle of tube - both bands narrower than stage 1 (1) - bands drawn at the top and middle of tube (1) - top band drawn narrower than stage 1 but wider than stage 3 and lower band drawn narrower than stage 3		

Question number	Answer	Mark
4(b)(ii)	The only correct answer is B	
	\boldsymbol{A} is incorrect because neither DNA molecule is made of all heavy nitrogen or light nitrogen	
C is incorrect because neither DNA molecule is made of all heavy nitrogen or light nitrogen + bands are too wide		
	Dis incorrect because it has only one band	(1)

Question number	Answer	Additional guidance	Mark
5(a)	ACCEPT any two from : - BMI / body mass index - waist to hip ratio / hip to waist ratio - waist to height ratio / height to waist ratio - waist circumference - skin fold (thickness)	IGNORE risk factors ACCEPT mass \div height $^{2} /$ weight \div height ${ }^{2}$	(1)

Question number	Answer	Mark
$\mathbf{5 (b) (i)}$	The only correct answer is B	
	B $1-6$ only	
C is incorrect because 1-4 bonds are present in straight chains only		
\boldsymbol{D} is incorrect because 1-6 bonds form the branches		

Question number	Answer	Additional guidance	Mark
5(b)(ii)	-makes the person feel full / prevents so much food from being in the stomach / fills up the stomach so less food needed to satisfy hunger / glucomannan takes the space of the food (1)IGNORE: reduces food intake decreases volume of stomach		

Question number	Answer	Additional guidance	Mark		
5(b)(iii)	An explanation that includes the following points: - because it contains lots of \{monosaccharides / glucose / energy\} (1)	ACCEPT sugar for glucose polymer of glucose lots of mannose broken down into lots of			
- therefore \{energy input could be greater than energy output /					
(excess) glucose converted to fat\} (1)					
- glucomannan would no longer be filling up the stomach so					
more food could be eaten (1)				\quad	ACCEPT excess energy stored as fat
:---					

Question number	Answer	Additional guidance	Mark
5(c)(i)	An answer that includes the following points: - group on low fat diet lost 4.3 (kg) and group on very lowcarbohydrate diet lost 8.1 (kg) (1) - (overall) loss of $8.1(\mathrm{~kg})$ is $\{1.88 / 1.9\}$ times more weight (1) - which is slightly lower than the other studies are claiming (1) - claims are referring to low-carbohydrate diet but this one is a very low-carbohydrate diet (1)	ACCEPT group on low fat diet lost 3.8 (kg) more ACCEPT about twice as much / for lowfat diet this is 4.6% of starting weight and for very low-carbohydrate 8.9\% starting weight ACCEPT results are at the lower end of the claim	(3)

Question number	Answer	Additional guidance	Mark
5(c)(ii)	An answer that includes two of the following points:		
• (blood) \{cholesterol / LDL\} levels (1)			
• blood pressure (1)	ACCEPT LDL : HDL		
• heart rate (1)			

Question number	Answer	Additional guidance	Mark
*6(a)	Indicative content: - triplet codon system (D) - because (at least) 20 codes needed for the amino acids (E) - e.g. AAC is code for asparagine (x) - degenerate code (D) - therefore some amino acids have more than one code (E) - e.g. threonine can be coded for by ACA, ACC, ACG or ACT (x) - non-overlapping code (D) - so each base on DNA is used in only one triplet codon (E) - e.g. AAC AGA codes for two amino acids (x)	ACCEPT three bases code for one amino acid ACCEPT each amino acid has its own code ACCEPT there are more codes than necessary ACCEPT discrete	(6)
Level 1 : refers to triplet codon system, degenerative code or non-overlapping code but no examples or explanation given 1 mark $=1$ out of 3 2 marks $=2$ out of 3 or 1 out of $3+$ a linked example or explanation Level 2 : refers to triplet codon system, degenerative code or non-overlapping code with either examples or explanation given 3 marks = at least 2 examples or 2 explanations or 1 of each 4 marks = at least 3 examples or 3 explanations or any combination of each Level 3 : refers to triplet codon system, degenerative code and non-overlapping code with examples and explanation given 5 marks $=$ at least 4 examples or explanations or any combination of each 6 marks $=$ at least 5 examples or explanations or any combination of each			

Question number	Answer	Additional guidance	Mark
6(b)(i)	• methionine alanine cysteine proline isoleucine leucine	ACCEPT phonetic spelling / reasonable abbreviations / M A C P IL	

Question number	Answer	Additional guidance	Mark
(b)(ii)	An explanation that includes the following points: - it will have no effect (on the polypeptide) if the ninth base becomes a T as this still codes for \{cysteine / same amino acid (1)	- will code for a stop codon if the ninth base becomes an A (1) - therefore the \{protein / polypeptide\} will be \{shorter / not formed\} (1)	ACCEPT only two amino acids will join together
- will code for tryptophan if the ninth base becomes G (1)	ACCEPT even if tryptophan not given / - thiven wrongly ACCEPT even if tryptophan not given / given wrongly		

Question number	Answer	Additional guidance	Mark
7(a)	A description that includes the following point: - to be present in the blood (all the time) (1)	ACCEPT precursor of clotting process / inactive form of thrombin / inactive enzyme / inactive plasma protein	
	- needed to make thrombin (when blood needs to clot) (1)		
- so that fibrinogen can be converted into fibrin (1)			

Question number	Answer	Mark
7(b)	The only correct answer is A	
A anticoagulant		
B is incorrect because antihypertensives treat high blood pressure		
C is incorrect because platelet inhibitors inhibit platelets, which are involved in the cascade before prothrombin and		
prothrombin is made by the liver		
\boldsymbol{D} is incorrect because statins treat high blood cholesterol levels		

Question number	Answer	Additional guidance	Mark
7(c)(i)	An answer that includes the following points: - warfarin and vitamin K have a similar structure (1)	ACCEPT both have rings / double bond oxygen	
	(therefore warfarin \{binds / blocks\} to the \{vitamin K epoxide reductase / VKOR\} (1)	ACCEPT warfarin is a \{competitive / active-site directed $\}$ inhibitor / description DO NOT ACCEPT non-competitive inhibitor / description of one binds to vitamin K	

Question number	Answer	Additional guidance	Mark
7(c)(ii)	An answer that includes the following points: - increase in vitamin K would compete with warfarin for the active site (of vitamin K epoxide reductase / VKOR) (1)	ACCEPT a description e.g. more enzyme substrate complexes	
therefore \{some / more\} vitamin K will be reduced (if vitamin K			
binds to enzyme) (1)			

Question number	Answer	Additional guidance	Mark
7(d)	An explanation that includes the following points: - large groups of people (1) - (sample size is large) for reproducibility (1) - people in both groups consume the same \{mass / volume / concentration\} of vitamin K (1) - people in both groups consume the same concentration of drugs (1) - (variables controlled) for validity (1)	ACCEPT 20 + IGNORE reference to control groups ACCEPT repeatable / reliable IGNORE accurate / precise / valid IGNORE amount ACCEPT other appropriate named control variable e.g. sex, age, diet, level of activity, alcohol intake IGNORE same number of people in each group / amount IGNORE accurate / precise /reproducible / repeatable / reliable	

Question number	Answer	Additional guidance	Mark
8(a)	An answer that includes three of the following points: Similarities Any two from: - both contain a glycerol (1) - both contain fatty acids (1) - both contain ester bonds (1) Differences - triglycerides have three fatty acids and phospholipids have two fatty acids (1) - triglycerides do not contain a phosphate group but phospholipids do contain a phosphate group (1)	NB Do not piece together from two descriptions in separate sentences IGNORE diagrams	(3)

Question number	Answer	Additional guidance	Mark
8(b)	An explanation that includes the following points: - \{protein / phosphate heads / phospholipid heads\} are \{soluble / hydrophilic / polar\} and interact with \{blood / plasma\} (1) - \{fatty acids / triglycerides /cholesterol\} is \{insoluble / non-polar / hydrophobic\} (1) - therefore cholesterol is surrounded by \{fatty acid tails / triglycerides\} (1)		(3)

Question number	Answer	Additional guidance				Mark
8(c)(i)	- volume of sphere calculated / values substituted into the equation (1) - volume of sphere rounded up to nearest whole number (1) - ratio calculated (1)	Example of calculation $\begin{aligned} & =6912 \text { if using } \pi=3 \\ & =7142.4 \text { if using } \pi=3.1 \\ & =7234.56 \text { if using } \pi=3.14 \\ & =7239.168 \text { if using } \pi=3.142 \\ & =7241.472 \text { if using } \pi=3.143 \\ & =7238.22947387 \text { if pressing } \pi \text { on calculator } \\ & =6912 / 7142 / 7235 / 7239 / 7238 / 7241 \end{aligned}$ ACCEPT 6910 / 7140 / 7240 NB Just these values given = 2 marks 14:1 $13: 1$ if $6910 / 6912$ CE apply throughout NB mark answer in table if different from in the working e.g.				
		Diameter of LDL / nm	Volume of LDL / n^{3}	Volume of cholesterol / nm ${ }^{3}$	Ratio of LDL volume to cholesterol volume	
			$\begin{aligned} & 7235 \\ = & 2 \text { marks } \end{aligned}$		$\begin{array}{r} 14: 1 \\ =1 \end{array}$	(3)

Question number	Answer	Additional guidance	Mark
*8(c)(ii)	Indicative content: - as LDL increases, risk increases (K / G) - several factors beside LDLs can increase the risk of CVD (K) - example of a factor given e.g. high blood pressure (K) - LDLs can be different sizes (Q) - and therefore be absorbed by endothelial cells differently (Q) - and therefore get broken down at different rates (K / Q) - and therefore carry different volumes of cholesterol (Q) - level of HDL (in blood) affects risk (of CVD) (K / G) - example given from graph e.g. 0.65 a.u. has greater risk than 2.20 a.u. (G) - ratio of LDL : HDL affects risk (of developing CVD) (K / G) - the lower LDL : HDL the ratio the lower risk of CVD (K / G)		(6)
Own knowledge (K), information given in the graph (G), information in the question (Q) Level 1 : uses either (K), (G) or (Q) 1 mark = 1 comment, 2 marks $=2$ comments Level 2 : uses two from (K), (G) or (Q) 3 marks = 3 comments, 4 marks $=4$ comments Level 3 : uses $(\mathrm{K}),(\mathrm{G})$ and $(\mathrm{Q}) \quad 5$ marks $=5$ comments, 6 marks $=6$ comments			

